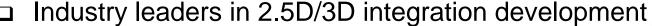
RER-3D: A Research Center for Radiation Effects Reliability Mechanisms Unique to 3D Integration

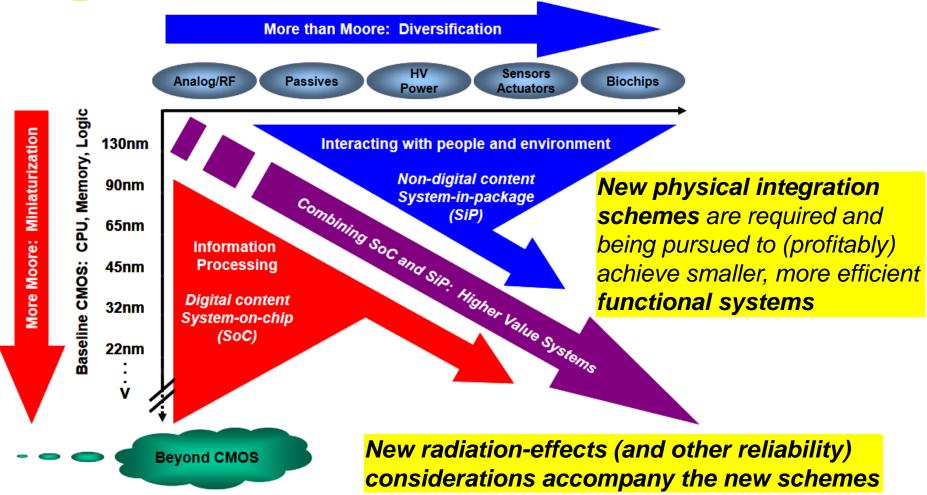
Vanderbilt, UCLA, NCSU, Aerospace, imec, cea-LETI, NHanced

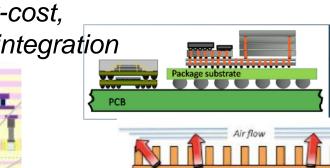

Grant # HDTRA 1-18-1-0002

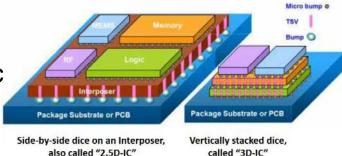
Team

- UCLA Center for Heterogeneous Integration and Performance Scaling (CHIPS)
- NCSU previous and existing synergistic programs
 - Several 3D integrated circuits previously designed and fabricated
 - Other designs / fabs in process and planned

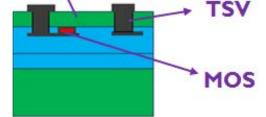
- Provide access to a range of test modules and integrated functional parts
- Unique radiation effects testing, modeling, and analysis expertise
 - Vanderbilt, Aerospace Corp.
 - Custom radiation transport codes




Motivation



Integration Schemes


- Integration options at different levels:
 - Packaging, wafer/die stacking, monolithic
 - Many custom options, evolving process
 - Approaches are application driven
 - COST, COST, COST
 - Near term: How do we "slap together" the needed components to achieve a function
 - Longer term: High-value, or low-cost, opportunities for more intimate integration

Source: YOLE http://www.i-micronews.com/lectureArticle.asp?id=8836

Thirschemes

Key Question and Goal

- RER-3D: A Research Center for Radiation Effects Reliability Mechanisms <u>Unique to 3D Integration</u>
- "How does the radiation response of complex 3D integrated electronic systems (esp. intimately integrated) differ from conventional planar electronics, and how do we analyze it?"
- ...apply extensive expertise in radiation-effects mechanisms, modeling, and testing to identify and <u>characterize the unique</u> <u>considerations of the geometries and materials in 3D</u> <u>integrated technologies</u> using advanced simulation and novel experimental techniques.

Focus on how the integration modifies what we know (don't know) about the response in "2D" – e.g. what is the "local environment"

RER3D: Superposition Strategy

Dashed lines designate core tasks in this DTRA Project Radiation transport Modeling of 3D Integrated structure

Testing of constituent structures (low layer count, TSVs plus transistors, etc.)

Conventional "2D"

Radiation response

Coupled

Thermal response

RER3D

Radiation
Effects
Reliability
Mechanisms
in 2.5/3D

Result: Methods for characterization of integrated parts for Radiation Environments

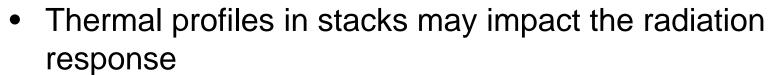
Test flight on small satellite

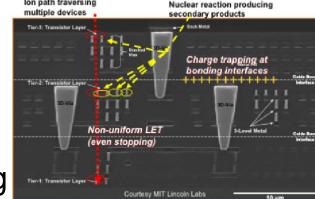
Thermal: This DTRA
program will consider the
potential temperature
dependence of the
radiation response

Thermal modeling and / or measurement of 3D Integrated structure

NHANDED SEMIDONDUCTORS

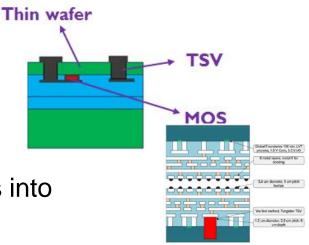
Testing of integrated structures using Aeropspace depth-profiling with pulsed X-ray, NSRL high energy testing

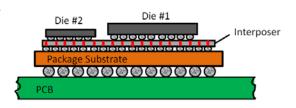


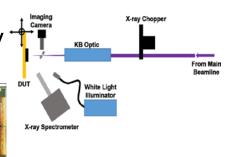

Potential Radiation Effects

- Removal of packaging may reduce shielding
- Stacking, bond wires, interposers, TSVs can alter "local" internal radiation environments

 | On path traversing multiple devices | Nuclear reaction producing multiple devices | Nuclear reaction producing secondary products
 - Attenuation
 - Enhancement
 - Secondary products
- New interfaces for charge trapping

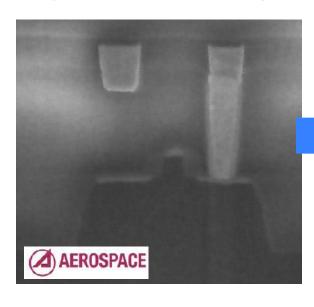

 Manifestations – multiple events in a 3D stack, becomes a 2D planar system analysis

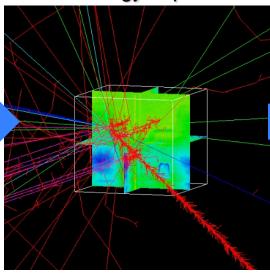




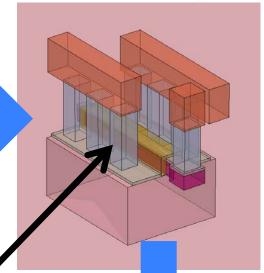
Approach

- Study at multiple levels of complexity
 - Baseline constituent structures
 - Basic circuit elements
 - Integrated functions
- Utilize CAD file formats to translate structures into radiation transport simulations
- Leverage existing knowledge about constituent technologies and circuits
- Identify do/don't cares, help guide priorities for applications
- Develop and apply models with increasing complexity program matures
- Apply unique test capabilities

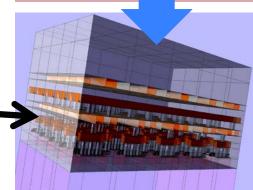




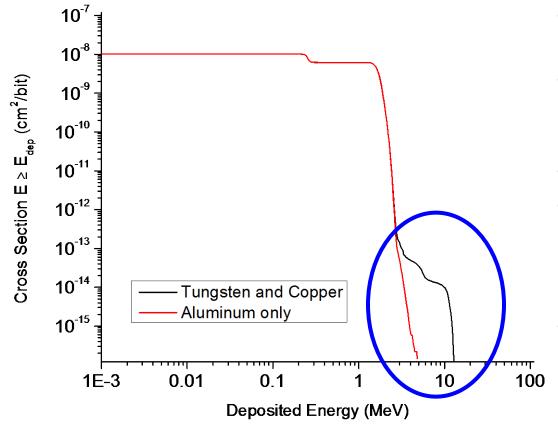
Example: High-Z Materials and Single Events


Device Image from Aerospace (1 of 490 slices shown)

3D structural model created for MRED; simulate Single Event energy deposition


3D TCAD model created; simulated device response to deposited energy

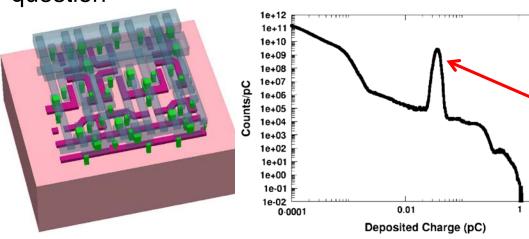
Simulate energy deposition and response for Al vs. W metal to look for possible single event enhancement


Cell arrayed in simulations to obtain statistics

R. D. Schrimpf et al., MRQW 2011, supported by the AFOSR/AFRL HiRev Program

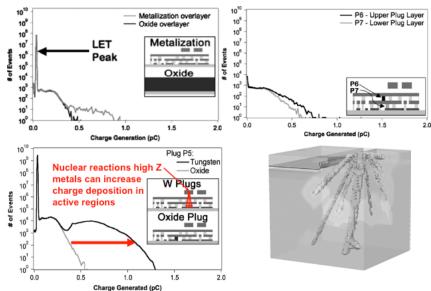
MRED Results – Fe Broadbeam

R. D. Schrimpf et al., MRQW 2011, supported by the AFOSR/AFRL HiRev Program

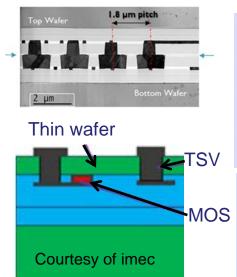

- 1 GeV ⁵⁶Fe normal incidence to device surface
- 3 × 3 replication of base TCAD structure (reduce edge effects)
- 500□× 10⁶ events simulated
- Estimate probability of events with energy equal to or greater than a given energy (E ≥ E_{dep})
 - Presence of W and Cu impacts the maximum predicted energy deposition in the sensitive volume group (~ 2-3 ×)

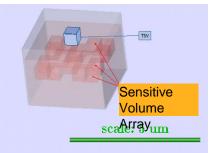
Example: Manifestations

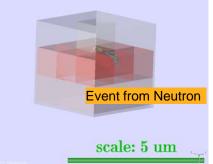
- Unexpected (based on the storage cell design) single-event upsets were observed in a memory part with less ionizing particles (lower LET) than expected thresholds
- Radiation transport analysis revealed that high-LET secondary products produced by interactions of the lighter particles with the high-Z metal interconnect plugs in the stack was responsible for the errors in question


Simulated histogram of number of particles/pC versus deposited charge shows for 523 MeV ²⁰Neon (average LET = 1.79 MeV-cm²/mg) shows a peak deposited charge at about 1.1 pC, comparable to the amount of charge deposited by a primary ion with LET = 50 MeV-cm²/mg due to nuclear reactions in the high-Z over layer material

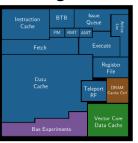
D. R. Ball, et al, Simulating Nuclear Events in a TCAD Model of a High-Density SEU Hardened SRAM Technology, *IEEE Trans. on Nucl. Sci.*, 53, 4, Aug. 2006, pp.1794-1798




Opportunity: TSV Structures

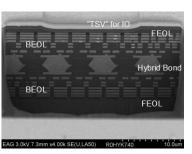

- Transport simulations used to study the impact of geometry and material on shielding and secondary production
- Wafers with transistors arrays with and without TSV over layers to be studied experimentally (from imec)

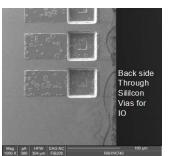
A. S. Kobayashi et al., The Effect of Metallization Layerson Single Event Susceptibility *IEEE Trans.* on *Nucl. Sci.*, 52, 6, Dec. 2005, pp. 2189-2193

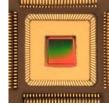


Opportunity: Test Circuit (MPU)

2D and 3D versions of microprocessors of similar designs (NCSU)

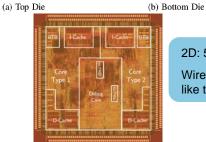

- Both in IBM (now GF) 130 nm bulk CMOS
- Packaged with ~90 pins, mounted on daughter card on an FPGA board
- Develop code snippets that can signal presence of transient fault through data communicated via Dcache
- Run code snippets twice compare data in Dcache for identical snippets. Use to count and (to some degree) locate transient fault when it occurs
- Compare against 2D version





Die size: ~ 4 x 4 mm Chip consists of multiple experiments:

- Heterogeneous multicore processor (blue)
- Vector core (green)
- 3D F2F, F2B bus
- experiments (purple)DRAM cache
- DRAM cache controller (brown)



2D: 5 x 5 mm, no 3D features

Wire bonded into package like that from 3D version

Opportunity: Test Circuit (SRAM)

- 3D stack consisting of two 28 nm bulk CMOS layers with non-TSV interposer (NCSU)
- Tapeout: July or Oct. Parts in 2019
- Hybrid face to face bonding
- Simple wet-etch TSVs
- Stack two 32k SRAMs : area : 0.25 sq.mm.
- Conduct march tests from BIST engine to capture time and location of bit flips
- Serialize this information out

RER3D : Synergy / Tech Tansfer

- □ DARPA (UCLA and NCSU connections)
- NASA NEPP (VU Connections)
- Industry (ex VU students in industry, imec, Leti, and Enhanced Semi connections; other relationship through the NASA interactions
- AMSAT potential collaborator for small satellite launch opportunity which could include a 3DIC in-fight radiation experiment. VU has a demonstrated history and ongoing efforts in cube/small satellite payloads for rad-effects experiments.
- Technology Transfer Potential: methods for characterization of parts for space (NASA, DoD, commercial space) missions and nuclear environments; understanding of SE mechanisms in terrestrial environments

Workforce Development

- Student visits among team facilities have been very beneficial in previous DTRA programs
- In this program, we will have an intentional focus on "cross training" of students
 - Internships (esp. @ imec, cea-Leti, Aerospace Corp.)
 - "Exchange" visits with other universities
 - Collaborative testing
 - Spending a month, semester, etc. at partner universities